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Derivation of a two-generator framework of nonequilibrium thermodynamics
for quantum systems

Hans Christian O¨ ttinger
ETH Zürich, Department of Materials, Institute of Polymers, CH-8092 Zu¨rich, Switzerland

~Received 22 December 1999!

Starting from the quantum description of isolated systems on the microscopic level we derive the two-
generator formulation of nonequilibrium thermodynamics by means of the projection-operator technique. As a
generalized canonical ensemble is employed, we obtain a convenient starting point for practical calculations in
nonequilibrium thermodynamics; in particular, also in the classical limit. All dynamical material properties are
contained in a canonical nonequilibrium correlation. However, the generalized canonical approach is inappro-
priate for systems with large fluctuations; possible steps toward a suitable generalization for quantum systems
are discussed.

PACS number~s!: 05.70.Ln, 05.30.2d
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I. INTRODUCTION

The understanding of nonequilibrium thermodynam
beyond the regime of linear constitutive equations is of gr
importance in many branches of science and engineering
order to provide both a practical and general framework
two-generator formulation of the time-evolution equatio
for nonequilibrium sytems, referred to as GENERIC~general
equation for the nonequilibrium reversible-irreversible co
pling!, was deduced by considering the compatibility of tw
levels of description and by studying a large number of s
cific examples@1#. The key idea of the GENERIC frame
work is the use of two separate generators, energy and
tropy, for the reversible and irreversible dynamics~this idea
had previously been proposed in the context of plasma p
ics @2#!. This is of crucial importance when treating system
without local equilibrium states, such as systems descri
by Boltzmann’s kinetic equation.

The relationship between GENERIC and a number of
ternative approaches to nonequilibrium thermodynamics
been established~see the summary in@3# and references
therein!. Moreover, a number of new results has been p
duced by this formulation of nonequilibrium thermodynam
ics. We here mention only the new insights into reptat
models for melts of linear polymers@4#, a modification of the
Doi-Ohta model for multiphase flow@5#, and new ways of
producing equations for discrete hydrodynamics@6#. More-
over, the applicability of GENERIC to relativistic system
has been established. Covariant hydrodynamic equation
the GENERIC form have been proposed@7#, a generally co-
variant version of the formalism has even been develo
@8#, and the implications for cosmological models have be
explored@9#.

Starting from Hamilton’s equations of classical mecha
ics, the GENERIC form of coarse-grained time-evoluti
equations for the slow dynamic variables was derived by
standard projection-operator technique@10# ~we here use the
book @11# as a basic reference for the projection-opera
technique!. It is the goal of this work to derive GENERIC
from a quantum mechanical description of an isolated mic
scopic system. While the generalized microcanonical der
tion from classical mechanics@10# includes a description o
large fluctuations in terms of stochastic differential equatio
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with multiplicative noise, the present derivation for quantu
systems is limited to situations withnegligible fluctuation
effects. In the final remarks, we comment on the possibil
of including fluctuations and on the expected form of t
corresponding fluctuation-dissipation theorem.

II. PROJECTION-OPERATOR APPROACH

In the projection-operator approach, one can account
the effects of the eliminated variables either by memory
fects, while considering linear equations for the releva
variables, or by suitable nonlinearities, while using a M
kovian approximation, or by a combination of both@11#. In
order to arrive at GENERIC, one needs to keep sufficien
many variables and the appropriate nonlinearities for ach
ing a realistic description of a system by Markovian tim
evolution equations.

We here consider the following situation. The releva
variables of an isolated nonequilibrium system with Ham
ton operatorH are given by the self-adjoint Hilbert spac
operatorsAk , wherek is a discrete or continuous label. Ou
goal is to determine time-evolution equations for the exp
tation valuesxk of these generally noncommuting obser
ablesAk by means of the projection-operator technique.

There are several fundamental differences between
approach and previous work on the projection-operator
proach~as elegantly presented in Ref.@11#!. First, we express
the projected time-evolution equations in terms of two se
rate generators for reversible and irreversible contributio
whereas previously only one generator was used~either the
free energy or the entropy@11#!. Second, we do not treat th
Hamiltonian separately in constructing projectors, nor do
insist on including it in the list of relevant variables, thu
avoiding the concept of a global temperature constant ty
cally occurring in one-generator theories and possible red
dancies among the relevant variables. A further differen
concerns the time evolution assumed in correlation functi
occurring in Green-Kubo-type formulas.

A. Relevant density matrix

A key step in the projection-operator formalism is th
identification of the relevant density matrixr̄ when the fea-
4720 ©2000 The American Physical Society
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tures of interest in a given system can be fully described
terms of the time-dependent variablesx5(xk). We here as-
sume thatr̄5 r̄(x) has the following properties:

tr$r̄~x!%51, ~1!

tr$r̄~x!Ak%5xk , ~2!

and r̄(x) maximizes the entropy

S@ r̄#52kBtr$r̄ ln r̄%, ~3!

wherekB is Boltzmann’s constant. We obtain the followin
explicit expression for the density matrix of a generaliz
canonical form:

r̄~x!5Z~x!21expS 2(
k

lk~x!AkD , ~4!

Z~x!5trH expS 2(
k

lk~x!AkD J , ~5!

where the Lagrange multiplierslk5lk(x) are determined by
Eq. ~2!. The term ‘‘generalized canonical’’ emphasizes t
fact that the list of variablesAk is much more general than i
a canonical ensemble, so that Eq.~4! corresponds to ‘‘qua-
siequilibrium’’ states characterized by the slow variablesxk .
We define the entropyS(x) by inserting the density matrix
~4! into Eq. ~3! for S@ r̄#, thus obtaining

S~x!5kBS ln Z~x!1(
k

lk~x!xkD . ~6!

Equations~2!, ~5!, and~6! then lead to

]S~x!

]xk
5kBlk~x!, ~7!

which offers a nice interpretation of the Lagrange multiplie
lk as the conjugates of the state variablesxk ~leading to
force-flux pairs!. Of course, the total energy of the system
given by

E~x!5tr$r̄~x!H%. ~8!

The proposed construction of the relevant density ma
does not take into account possible symmetries, which m
restrict the functional form of the density matrix in certa
variables. For example, Galileian invariance should im
restrictions on the possible occurrence of velocities. Hen
in general, one should identify not only the relevant va
ables, but also the underlying symmetries. Work on
proper inclusion of symmetries in the construction of t
relevant density matrix is in progress.

B. Projection operator

Following @11#, we can now define the fundamental pr
jection operator in terms of the relevant density mat
through the following action on arbitrary observablesF:
n

x
y

y
e,
-
e

P~x!F5tr$r̄~x!F%1(
k

@Ak2xk# trH ]r̄~x!

]xk
FJ , ~9!

as well as the complementary projectorQ(x)512P(x). We
also use the notationP(t)5P„x(t)…, Q(t)5Q„x(t)…. The
projection-operator formalism can be based on the follow
rigorous identity, to be verified by differentiation with re
spect to time@11#:

eiLt5eiLt P~ t !1Q~0!G~0,t !

1E
0

t

eiLuP~u!@ iL 2 Ṗ~u!#Q~u!G~u,t !du, ~10!

where the generator of time translations,L, in the Heisenberg
picture operates on observablesF as the commutator with the
Hamilton operator divided by Planck’s constant,LF
5@H,F#/\; the overdot indicates differentiation with respe
to time; and in the time-ordered exponential

G~u,t !5T expS E
u

t

iLQ~s!dsD ~11!

the operators are ordered from left to right as time increa
The physical relevance of the formal identity~10! can be
understood as follows: It expresses the well-known solut
of the inhomogeneous linear differential equations for
slow observables, as projected out byP(t), in the presence
of inhomogeneities given by the rapid contributions, as p
jected out byQ(t).

C. Exact time-evolution equation

By acting with both sides of Eq.~10! on iLA j and aver-
aging with respect to the initial density matrixr̄„x(0)… we
obtain an exact time-evolution equation forx(t),

dxj~ t !

dt
5tr$r̄„x~ t !…iLA j%

1E
0

t

tr$r̄„x~u!…iLQ~u!G~u,t !iLA j%du. ~12!

In deriving Eq.~12! we assumed that the exact initial dens
matrix is of the relevant form~4!. This should be looked
upon as a condition for the adequate definition of the r
evant density matrix rather than a restriction of initial sta
@11#.

In the following, the first term on the right-hand side
Eq. ~12! is referred to as reversible and the second term
irreversible. The reversible term can be written as

Fdxj~ t !

dt G
rev

5
i

\
tr$r̄„x~ t !…@H,Aj #%. ~13!

The energy, as a conserved quantity, should certainly
among the slow variables. However, contrary to previo
work, we here do not necessarily includeH explicitly in the
list of relevant observables, because this list typically co
tains internal energy and momentum densities, in terms
which the total energy can be expressed, and such redun
cies need to be avoided. Theaccessibility of the energy
through the relevant variables is hence expressed through
formal assumption
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P~ t !H5H. ~14!

With this assumption one obtains the final expression for
reversible contribution to the time evolution,

Fdxj~ t !

dt G
rev

5(
k

L jk„x~ t !…
]E„x~ t !…

]xk
~15!

with the Poisson matrix

L jk~x!5
1

i\
tr$r̄~x!@Aj ,Ak#%. ~16!

By means of the operator identity

@e2A,B#5e2A E
0

1

ejA@B,A#e2jAdj, ~17!

we obtain the following still exact result for the irreversib
contribution in Eq.~12!:

Fdxj~ t !

dt G
irr

5S i

\ D 2 E
0

t

tr$@ r̄„x~u!…,H#Q~u!G~u,t !@H,Aj #%du

5S i

\ D 2 E
0

t

lk„x~u!… tr$r̄„x~u!…@H,Ak#x(u)
(s) Q~u!

3G~u,t !@H,Aj #%du ~18!

with

@H,Ak#x
(s)5E

0

1

ej(
l

l l (x)Al@H,Ak#e
2j(

l
l l (x)Aldj.

~19!

D. Markovian approximation

The crucial assumption of the projection-operator form
ism now is that there should exist a clear separation of t
scales. The relevant variablesxk evolve on a time scale larg
compared to some intermediate scalet, and all other vari-
ables evolve rapidly compared tot. Experience shows tha
this situation exists for many macroscopic systems of inte
@11#. In view of the occurrence of the projectorsQ ~project-
ing on the fast variables! in the integral of Eq.~18!, the
integrand should decay rapidly, and the integral is expec
to be dominated by values ofu betweent2t andt. Then, all
slow variables in the integral can be evaluated at timet and,
in particular,lk„x(u)… can be pulled out of the integral a
lk„x(t)…. With Eq. ~7! we then obtain the following approxi
mate version of Eq.~18!:

Fdxj~ t !

dt G
irr

5(
k

M jk„x~ t !…
]S„x~ t !…

]xk
~20!

with the friction matrix

M jk~x!5
1

kB
S i

\ D 2 E
0

t

tr$r̄~x!@H,Ak#x
(s)Q~x!eiLQ(x)uQ~x!

3@H,Aj #%du. ~21!
e

-
e

st

d

It is customary to neglect the projectorQ(x) occurring in the
exponential of this expression, which then leads to

M jk~x!5
1

kB
S i

\ D 2 E
0

t

tr$r̄~x!@H,Ak#x
(s)Q~x!eiHu/\Q~x!

3@H,Aj #e
2 iHu/\%du. ~22!

However, this last approximation is not necessary in orde
obtain the decomposition~20!. From a practical point of
view, it might even be advantageous to keep the projectoQ
because, in a computer simulation, it would allow us to br
in information about the underlying nonequilibrium statex,
for which the friction matrix is to be evaluated, after eve
time step.

Equations~21! and~22! can be expressed conveniently
terms of thecanonical nonequilibrium correlation

^A;B&x5E
0

1

tr H r̄~x!ej(
k

lk(x)AkAe2j(
k

lk(x)Ak BJ dj,

~23!

which is the natural generalization of the analogous cano
cal correlation of Kuboet al. @12# ~the original canonical
correlation is based on a density matrix proportional
exp@2H/(kBT)#), and closely related to Grabert’s generaliz
canonical correlation@11# ~as mentioned before, we her
avoid the prominent role ofH in the list of relevant vari-
ables!. This generalization is necessary for going from ne
equilibrium to far-from-equilibrium situations. The twofol
role of the Hamiltonian in the time evolution and in th
density matrix, which leads to considerable mathemat
simplifications near equilibrium~see, e.g., temperatur
Green’s functions@12#!, is lost in moving far away from
equilibrium.

E. GENERIC properties

In summary, we have derived the time-evolution equat

dxj

dt
5(

k
S L jk~x!

]E~x!

]xk
1M jk~x!

]S~x!

]xk
D , ~24!

where the building blocksS, E, L, andM are given by the
microscopic expressions~6!, ~8!, ~16!, and~21!, respectively.
In this equation, memory effects are eliminated in favor
nonlinearities inx. The time-evolution equation~24! holds
far from equilibrium; the basic assumption is that the no
equilibrium states of the system of interest can be charac
ized by the observablesAk with expectationsxk .

Note that Eq.~24! is the fundamental equation of the GE
NERIC framework. Various properties of the building bloc
can immediately be derived from the microscopic expr
sions, such as the antisymmetry of the matrixL jk from Eq.
~16!. The fact thatr̄(x) commutes with(k lk(x)Ak implies
the degeneracy requirement

(
k

L jk~x!
]S~x!

]xk
50, ~25!

which is an important part of the GENERIC framework@1#.
The other basic degeneracy requirement of that framewo
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(
k

M jk~x!
]E~x!

]xk
50, ~26!

can be shown only when the possibly approximate assu
tion ~14! expressing the accessibility of energy may be u
@the situation concerning the rigor of proofing the mutu
degeneracy requirements~25! and ~26! is hence reversed
compared to the previous work@10#, where a generalized
microcanonical description of a classical system was e
ployed#. Other properties, such as the Jacobi identity
pressing the time-structure invariance of the Poisson bra
associated with the antisymmetric matrixL @1#, remain to be
shown~cf. comments in@3#!.

III. CONCLUDING REMARKS

The fact that the building blocks~6!, ~8!, ~16!, and~21! of
GENERIC arise so naturally from the projection-opera
formalism applied to isolated quantum systems provide
further argument in favor of the two-generator approach
nonequilibrium thermodynamics. Without any modification
the GENERIC framework is now established to be consis
not only with special@7# and general@8# relativity, but also
with quantum mechanics.

The integrand occurring in Eq.~21! should be considered
as the most natural nonequilibrium correlation function
quantum systems. The results of this work are of great h
also for classical systems because they indicate how to m
from a generalized microcanonical ensemble@10# to a gen-
eralized canonical nonequilibrium ensemble. As in equil
rium thermodynamics, this should be helpful in practical c
culations and, in particular, the classical counterparts of
formulas derived in this work might be used as a start
point for nonequilibrium Monte Carlo and molecular dynam
ics simulations.

Compared to the previous result for the generalized
crocanonical ensemble for a classical system@10#, the ex-
pressions~16! and~21! for the Poisson and friction matrice
obtained after replacing commutators by Poisson brac
are formally identical, which is a remarkable result. The o
difference is thatr̄ here represents the generalized canon
ensemble~4! instead of a microcanonical ensemble. This d
ference does not matter as long as fluctuations are neglig
small. By arguments analogous to those used in equilibr
statistical mechanics~see, e.g., Sec. 2.4 of@13#!, we expect
sharply peaked contributions to averages for both the mi
canonical and the canonical ensembles. However, when
tuations become large, the assumption of a generalized
nonical ensemble~4! in terms of the averages of the releva
observables becomes inappropriate. The more detailed
sical projection-operator result for distribution functions
relevant variables shows that the GENERIC~24! should be
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replaced by the Itoˆ stochastic differential equations

dxj

dt
5(

k
S L jk~x!

]E~x!

]xk
1M jk~x!

]S~x!

]xk
1kB

]M jk~x!

]xk
D

1(
n

Bj n~x!
dWn

dt
, ~27!

where theWn are independent Wiener processes@14#, and
their configuration-dependent prefactorsBj n are given by the
fluctuation-dissipation theoremof the second kind@12#,

(
n

Bj n~x!Bkn~x!52kBM jk~x!. ~28!

The configuration-dependent or multiplicative and hen
non-Gaussian noise in Eq.~27! implies nontrivial fluctuation
effects on the averages of the stochastic processesxk , which
are known as fluctuation renormalization@11#.

For quantum systems also, it would be convenient to
scribe thermal fluctuations by stochastic differential eq
tions for the expectations of the operatorsAk , rather than by
time-evolution equations for some density matrix@11#, be-
cause one would like to have a self-contained description
the coarse-grained level, and because efficient integra
schemes are known for stochastic differential equations@14#.
It is natural to assume that even in the quantum case
recover the equations~27! and~28! for the thermal noise. As
in equilibrium thermodynamics, the structure of the coar
grained equations should not depend on the classica
quantum nature of the microscopic system, whereas the
plicit expressions for the building blocks~a thermodynamic
potential for an equilibrium system;E, S, L, M for a nonequi-
librium system! should occur as natural generalizations
going from classical to quantum systems. Moreover, cano
cal correlations naturally occur in the fluctuation-dissipati
theorem @12#. While the generalized canonical ensemb
clearly becomes inappropriate for evaluating the Poisson
friction matrices~16! and ~21! in the presence of large fluc
tuations, it is not obvious what density matrix should then
used in these expressions. A generalized microcanonica
semble with sharp values for the observablesAk does not
exist in a quantum mechanical system because, in gen
the observablesAk do not commute. The proper coupling o
the quantum fluctuations resulting from Heisenberg’s unc
tainty principle and of the thermal fluctuations resulting fro
coarse graining should be achieved by constructing a qu
tum microcanonical nonequilibrium ensemble with un
formly as well-defined values of the observablesAk as al-
lowed by their commutation relations. Wigner distributio
functions as relevant variables@13,15,16# would provide a
convenient mathematical tool for developing the correspo
ing projection-operator formalism.
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@10# H.C. Öttinger, Phys. Rev. E57, 1416~1998!.
@11# H. Grabert,Projection Operator Techniques in Nonequilib

rium Statistical Mechanics~Springer, Berlin, 1982!.
@12# R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II,

Nonequilibrium Statistical Mechanics, 2nd ed.~Springer, Ber-
lin, 1991!.

@13# M. Toda, R. Kubo, and N. Saitoˆ, Statistical Physics I, Equilib-
rium Statistical Mechanics, 2nd ed.~Springer, Berlin, 1992!.
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